游客
题文

设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有. 则称直线l为曲线S的“上夹线”.
⑴已知函数.求证:为曲线的“上夹线”.
⑵观察下图:
          
根据上图,试推测曲线的“上夹线”的方程,并给出证明.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

求下列函数的导数

已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,
(Ⅰ)求的取值范围;
(Ⅱ)若线段AB的垂直平分线交轴于点N,求面积的最大值.(14分)

如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(14分)

河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?(12分)

动直线y =a,与抛物线相交于A点,动点B的坐标是,求线段AB中点M的轨迹的方程.(12分)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号