(本小题满分12分)
设数列满足:
(Ⅰ)求的值;
(Ⅱ)设数列通项公式
;
(Ⅲ)求证:
已知函数,
,和直线
:
.
又.
(1)求的值;
(2)是否存在的值,使直线
既是曲线
的切线,又是
的切线;如果存在,求出k的值;如果不存在,说明理由.
(3)如果对于所有的
,都有
成立,求k的取值范围.
已知椭圆:
的离心率为
,过坐标原点
且斜率为
的直线
与
相交于
、
,
.
⑴求、
的值;
⑵若动圆与椭圆
和直线
都没有公共点,试求
的取值范围.
(
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,
求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.
,
是方程
的两根, 数列
是公差为正的等差数列,数列
的前
项和为
,且
.
(1)求数列,
的通项公式; (2)记
=
,求数列
的前
项和
.
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,
他获得返券的金额记为(元).求随机变量
的分布列和数学期望.