(本小题满分12分)将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数之和为5的概率;
(2)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率.
随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市500名居民的工作场所和呼吸系统健康,得到列联表如下:
室外工作 |
室内工作 |
合计 |
|
有呼吸系统疾病 |
150 |
||
无呼吸系统疾病 |
100 |
||
合计 |
200 |
(1)补全列联表;
(2)你是否有95%的把握认为感染呼吸系统疾病与工作场所有关;
(3)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.
参考公式与临界值表:K2=
P(K2≥k0) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k0 |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.
(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.
已知公差不为零的等差数列,等比数列
,满足
,
,
.
(1)求数列、
的通项公式;
(2)若,求数列{
}的前n项和.
已知函数,m∈R,且
的解集为
.
(1)求的值;
(2)若+,且
,求
的最小值.
在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.
(1)写出直线的普通方程与圆的直角坐标方程;
(2)由直线上的点向圆引切线,求切线长的最小值.