通过研究学生的学习行为,专家发现,学生的注意力随老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设表示学生的注意力随时间
(分钟)的变化规律(注:
越大,表明学生的注意力越集中),经过实验分析得知:
.
(1).讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2).讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3).一道数学难题需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?
打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,(1)将本题的2*2联表格补充完整。
(2)用提示的公式计算,每一晚都打鼾与患心脏病有关吗?
提示:
患心脏病 |
未患心脏病 |
合计 |
|
每一晚都打鼾 |
3 |
17 |
a = |
不打鼾 |
2 |
128 |
b = |
合计 |
c = |
d = |
n = |
如果复数z=(m2+m-1)+(4m2-8m+3)i (m∈R)的共轭复数对应的点在第一象限,求实数m的取值范围.
已知函数.
(1)求的单调区间;
(2)若在
上恒成立,求所有实数
的值;
(3)对任意的,证明:
已知椭圆经过点
,离心率为
,过点
的直线
与椭圆
交于不同的两点
.
(1)求椭圆的方程;
(2)求的取值范围.
已知函数.
(1)若函数在区间
上存在极值点,求实数a的取值范围;
(2)如果当时,不等式
恒成立,求实数k的取值范围;