通过研究学生的学习行为,专家发现,学生的注意力随老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设表示学生的注意力随时间
(分钟)的变化规律(注:
越大,表明学生的注意力越集中),经过实验分析得知:
.
(1).讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2).讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3).一道数学难题需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?
已知圆的方程:
(1)求m的取值范围;
(2)若圆C与直线相交于
,
两点,且
,求
的值
(3)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;
如图,在三棱柱中,侧棱
底面
,
为
的中点,
.
(1)求证:平面
;
(2)若,求三棱锥
的体积.
某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)这种抽样方法是哪一种方法?
(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?
箱子里有3双不同的手套,随机拿出2只,记事件A表示“拿出的手套配不成对”;事件B表示“拿出的都是同一只手上的手套”.
(1)请列出所有的基本事件;
(2)分别求事件A、事件B的概率.
已知圆:
,点
,直线
.
(1)求与圆相切,且与直线
垂直的直线方程;
(2)在直线上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上的任一点
,都有
为一常数,试求出所有满足条件的点
的坐标.