(本小题满分14分)等差数列
的首项与公差均大于零,
是数列
的前n项和,对于任意
,都有
成立
(1)求数列
的公差和
的值;
(2)设
,且数列
的前n项和
的最小值为
,求
的值.
已知函数
.
(1)若
,求曲线
在点
处的切线方程;
(2)若函数
在其定义域内为增函数,求正实数
的取值范围;
(3)设函数
,若在
上至少存在一点
,使得
>
成立,求实数
的取值范围.
请你设计一个包装盒,如图所示,
是边长为
的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得
四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,
在
上是被切去的等腰直角三角形斜边的两个端点,设
.
(1)若广告商要求包装盒侧面积
最大,试问
应取何值?
(2)若广告商要求包装盒容积
最大,试问
应取何值?并求出此时包装盒的高与底面边长的比值.

已知
为偶函数,曲线
过点
,
.
(1)若曲线
有斜率为0的切线,求实数
的取值范围;
(2)若当
时函数
取得极值,确定
的单调区间.
用反证法证明:已知
,
,
,求证:
,
,
.
已知
.
(1)设
,求
;
(2)如果
,求实数
的值.