某运动物体做直线运动,第1s内的平均速度是3m/s,第2s、第3s内的平均速度是6m/s,第4s内的平均速度是5m/s,则4s内运动物体的平均速度是多少?
足够长的平行金属导轨MN、PQ放置在水平面上,处在磁感应强度B =1.00T的竖直方向匀强磁场,导轨M与P间连接阻值为R=0.30Ω的电阻,质量为m=0.5kg的金属棒ab与MP紧贴在导轨上,处于两导轨间的长度L=0.40m、电阻r=0.10Ω,如图所示。现在水平恒定拉力F作用下金属棒ab由静止开始向右运动,其运动距离与时间的关系如下表所示。导轨与金属棒间的动摩擦因数为0.3,导轨电阻不计。g=10m/s2。求:
时间t(s) |
0.0 |
1.0 |
2.0 |
3.0 |
4.0 |
5.0 |
6.0 |
7.0 |
运动距离x(m) |
0.0 |
0.6 |
2.0 |
4.3 |
6.8 |
9.3 |
11.8 |
14.3 |
(1)在4.0s时间内,通过金属棒ab截面的电荷量q;
(2)水平恒定拉力F;
(3)在7.0s时间内,整个回路产生的电热Q。
如图所示,在xoy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与负x轴成45°角.在x<0且OM的左侧空间存在着负x方向的匀强电场E,场强大小为0.32N/C; 在y<0且OM的右侧空间存在着垂直纸面向里的匀强磁场B,磁感应强度大小为0.1T.一不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度进入磁场,最终离开电磁场区域.已知微粒的电荷量q=5×10-18C,质量m=1×10-24kg,求:
(1)带电微粒第一次经过磁场边界的位置坐标;
(2)带电微粒在磁场区域运动的总时间;
(3)带电微粒最终离开电、磁场区域的位置坐标.
如图所示,一个厚度不计的圆环A,紧套在长度为L的圆柱体B的上端,A、B两者的质量均为m.A与B之间的最大静摩擦力与滑动摩擦力相同,其大小为kmg(k>1).A,B一起由离地H高处由静止开始落下,触地后能竖直向上弹起,触地时间极短,且无动能损失.A环运动过程中未落地.
(l)B与地第一次碰撞后,B上升的最大高度是多少?
(2)B与地第一次碰撞后,当A与B刚相对静止时,B下端离地面的高度是多少?
(3)要使A、B不分离,L至少应为多少?
均匀导线制成的单位正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m。将其置于磁感强度为B的水平匀强磁场上方h处,如图所示。线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行。当cd边刚进入磁场时,
(1)求线框中产生的感应电动势大小;
(2)求cd两点间的电势差大小;
(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件。
经检测汽车A的制动性能:以标准速度20m/s在平直公路上行使时,制动后经时间t=40s停下来。现A在平直公路上以V1=20m/s的速度行使发现前方S=180m处有一货车B以V2=6m/s的速度同向匀速行使,司机立即制动,通过计算说明能否发生撞车事故?