如图所示的电路中,R1=3 Ω,R2=6 Ω,R3=1.5 Ω,C=20 μF,当开关S断开时,电源的总功率为2 W;当开关S闭合时,电源的总功率为4 W,求:
(1)电源的电动势和内电阻;
(2)闭合S时,电源的输出功率;
(3)S断开时,电容器所带的电荷量是多少?
如图(a)所示,间距为L电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度恒为B不变;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上也由静止释放。在ab棒运动到区域Ⅱ的下边界EF之前,cd棒始终静止不动,两棒均与导轨接触良好。又已知cd棒的质量为m,区域Ⅱ沿斜面的长度也是L,在t=tx时刻(tx未知)ab棒恰好进入区域Ⅱ,重力加速度为g。求:通过cd棒中的电流大小和区域I内磁场的方向
ab棒开始下滑的位置离区域Ⅱ上边界的距离s;
ab棒从开始到下滑至EF的过程中,回路中产生的总热量。(结果均用题中的已知量表示)
用同种材料制成倾角为α=37°的斜面和长水平面,斜面长2.5m且固定,斜面与水平面之间有一段很小的弧形连接。一小物块从斜面顶端以初速度v0沿斜面向下滑动,若初始速度v0=2.0m/s,小物块运动2.0s后停止在斜面上。减小初始速度v0,多次进行实验,记录下小物块从开始运动到最终停下的时间t,做出相应的t-v0图像如图所示。(sin37°=0.6,cos37°=0.8)求小物块在斜面上下滑的加速度。
求小物块与该种材料间的动摩擦因数。
某同学认为,若小物块初速度v0=3m/s,则根据图像可以推知小物块从开始运动到最终停下的时间为3s。这一说法是否正确?若正确,请给出推导过程;若不正确,请说明理由,并解出正确的结果。
如图所示,相距2L的AB、CD两直线间存在着两个大小不同、方向相反的有界匀强电场,其中PT上方的电场E1方向竖直向下,PT下方的电场E0方向竖直向上,在电场左边界AB上宽为L的PQ区域内,连续分布着电荷量为+q、质量为m的粒子。从某时刻起由Q到P点间的带电粒子,依次以相同的初速度v0沿水平方向垂直射入匀强电场E0中,若从Q点射入的粒子,通过PT上的某点R进入匀强电场E1后从CD边上的M点水平射出,其轨迹如图所示,测得MT两点的距离为L/2。不计粒子重力及它们间的相互作用。试求:(m、q、L,、a、 v0为已知量)电场强度E0的大小;
在PQ间还有许多水平射入电场的粒子通过电场后也能垂直CD边水平射出,这些入射点到P点的距离有什么规律?
有一边长为a、由光滑绝缘壁围成的正方形容器,在其边界正中央开有一小孔S,将其置于CD右侧,若从Q点射入的粒子经AB、CD间的电场从S孔水平射入容器中。欲使粒子在容器中与器壁多次垂直碰撞后仍能从S孔射出(粒子与绝缘壁碰撞时无能量和电量损失),并返回Q点,在容器中现加上一个如图所示的匀强磁场,粒子运动的半径小于a,磁感应强度B的大小还应满足什么条件?
如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场.一粒子源固定在x轴上的A点,A点坐标为(-L,0).粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L),电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15°角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用).求:第二象限内电场强度E的大小.
电子离开电场时的速度方向与y轴正方向的夹角θ.
圆形磁场的最小半径Rm.
如图所示,是某公园设计的一种惊险刺激的娱乐设施,轨道CD部分粗糙,μ=0.1,其余均光滑。第一个圆管轨道的半径R=4m,第二个圆管轨道的半径r=3.6m。一挑战者质量m=60kg,沿斜面轨道滑下,滑入第一个圆管形轨道(假设转折处无能量损失),挑战者到达A、B两处最高点时刚好对管壁无压力,然后从平台上飞入水池内,水面离轨道的距离h=1m。g取10 m/s2,管的内径及人相对圆管轨道的半径可以忽略不计。则:挑战者若能完成上述过程,则他应从离水平轨道多高的地方开始下滑?
CD部分的长度是多少?
挑战者入水时的方向(用与水平方向夹角的正切值表示)?