如图所示,某传送带与地面倾角θ=37o,AB之间距离L1=2.05m,传送带以=1.0m/s的速率逆时针转动。质量为M=1.0kg,长度L2=1.0m的木板上表面与小物块的动摩擦因数μ2=0.4,下表面与水平地面间的动摩擦因数μ3=0.1,开始时长木板靠近传送带B端并处于静止状态。现在传送带上端A无初速地放一个质量为m=1.0kg的小物块,它与传送带之间的动摩擦因数为μ1=0.5,(假设物块在滑离传送带至木板右端时速率不变,sin37o=0.6,cos37 o =0.8, g=10
)。求:
(1)物块离开B点的速度大小;
(2)物块在木板上滑过的距离;
(3)木板在地面上能滑过的最大距离。
在研究摩擦力特点的实验中,将木块放在足够长的固定的水平长木板上,如图1所示。用力沿水平方向拉木块,拉力从0开始逐渐增大,分别用力传感器采集拉力和木块所受到的摩擦力,并用计算机绘制出摩擦力Ff 随拉力F变化的图象,如图2所示。已知木块质量为0.78kg,取g=10m/s2,sin37°=0.60,cos37°=0.80。求:
(1)木块与长木板间的动摩擦因数;
(2)若木块在与水平方向成斜向右上方的恒定拉力F作用下,以a=2.0m/s2的加速度从静止开始做匀变速直线运动,如图3所示,则拉力F的大小应为多大?
(3)在(2)中力作用2s后撤去拉力F,木块还能滑行多远?
如图所示,竖直放置的质量为4m,,长为L的圆管顶端塞有一个质量为m的弹性圆球,球和管间的滑动摩擦力和最大静摩擦力大小均为4mg.圆管从下端离地面距离为H处自由落下,落地后向上弹起的速度与落地时速度大小相等。试求:
(1)圆管弹起后圆球不致滑落,L应满足什么条件;
(2)圆管上升的最大高度是多少;
(3)圆管第二次弹起后圆球不致滑落,L又应满足什么条件。
如图甲所示,两平行金属板间距为2l,极板长度为4l,两极板间加上如图乙所示的交变电压(t=0时上极板带正电)。以极板间的中心线OO1为x轴建立坐标系,现在平行板左侧人口正中部有宽度为l的电子束以平行于x轴的初速度v0从t=0时不停地射入两板间。已知电子都能从右侧两板间射出,射出方向都与x轴平行,且有电子射出的区域宽度为2l.电子质量为m,电荷量为e,忽略电子之间的相互作用力。
(1)求交变电压的周期T和电压U0的大小;
(2)在电场区域外加垂直纸面的圆形有界匀强磁场,可使所有电子经过圆形有界匀强磁场均能会聚于(6l,0)点,求所加磁场磁感应强度B的最大值和最小值。
在某一个探究实验中,实验员将某物体以某一确定的初速率v0,沿斜面向上推出(斜面足够长且与水平方向的倾角θ可调节)设物体在斜面上能达到的最大位移为Sm.实验测得Sm与斜面倾角θ的关系如右图所示,g取10m/s2,求:物体的初速率v0和物体与斜面间的动摩擦因数μ。
如图所示,M、N为水平放置的平行金属板,板长和板间距均为2d。在金属板左侧板间中点处有电子源S,能水平发射初速为V0的电子,电子的质量为m,电荷量为e。金属板右侧有两个磁感应强度大小始终相等,方向分别垂直于纸面向外和向里的匀强磁场区域,两磁场的宽度均为d。磁场边界与水平金属板垂直,左边界紧靠金属板右侧,距磁场右边界d处有一个荧光屏。过电子源S作荧光屏的垂线,垂足为O。以O为原点,竖直向下为正方向,建立y轴。现在M、N两板间加上图示电压,使电子沿SO方向射入板间后,恰好能够从金属板右侧边缘射出.进入磁场。(不考虑电子重力和阻力)
(1)电子进入磁场时的速度v;
(2)改变磁感应强度B的大小,使电子能打到荧光屏上,求
①磁场的磁感应强度大小的范围;
②电子打到荧光屏上位置坐标的范围。