甲车以加速度3m/s2由静止开始作匀加速直线运动,乙车落后2s钟在同一地点由静止开始,以加速度4m/s2作匀加速直线运动,两车的运动方向相同,求:
(1)在乙车追上甲车之前,两车距离的最大值是多少?
(2)乙车出发后经多长时间可追上甲车?
如图所示,A、B两个气缸中装有体积均为10 L、压强均为1 atm(标准大气压)、温度均为27
的空气,中间用细管连接,细管容积不计,管中有一绝热活塞,不计摩擦,A气缸中的气体温度保持不变,A气缸截面积为50
.现将B气缸中的气体升温到127
,若要使细管中的活塞仍停在原位置,则A中左边活塞应向右推多少距离?
如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射人,带电粒子恰好做匀速直线运动,经
时间从P点射出。
(1)求电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经
/2时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。
(3)若仅撤去电场,带电粒子仍从O点沿原方向射入,且速度为原来的4倍,求粒子在磁场中运动的时间
如图甲所示,某课外研究小组将一个压力传感器安装在离心轨道圆周部分的最低点B处,他们把一个钢球从轨道上的不同高处由静止释放。得到多组压力传感器示数F和对应的释放点的高度h的数据后,作出了如图乙所示的F-h图象。不计各处摩擦,取g="10"
。
(1)求该研究小组用的离心轨道圆周部分的半径R
(2)当h=0.6m,小球到达圆周上最高点C点、时,轨道对小球的压力多大?
图甲是中国自行设计、研制的最大的受控核聚变实验装置:其原理如图乙,带电粒子被强电流线圈产生的磁场约束在一个半经为r的“容器”中,通电线圈产生的圆形磁场可看作匀强磁场,磁场圆半径为R,R>r且两圆同心,磁感应强度为B,它们的截面如图丙所示。“容器”中有质量均为m,带电量均为q的带电粒子,在“容器”内运动, 有些粒子会运动到“容器”的边缘,观察到在“容器”的边缘各处,有向各个方向离开“容器”的粒子,且每个方向的粒子的速度都从0到v分布。不久,所有粒子都能返回“容器”。 (本题只考虑运动方向与磁场垂直的粒子,不计粒子重力和粒子间相互作用和碰撞)
⑴要产生如图乙所示的磁场,逆着磁场方向看,线圈中的电流方向如何?不改变装置结构,要改变磁场,可釆取什么方法?
(2)为保证所有粒子从“容器”边缘处离开又能返回,求带电粒子的最大速度v
(3)如果“容器”中带电粒子是核聚变的原料
、
,它们具拥同的动能,但被该装置约束后,它们的“容器”半径会不同。现用该装置约束这两种粒子,设它们“容器”的最大的半径分别为r1、r2,试推导r1、r2和R应满足的关系式。
〔20分)图甲是“玉免号”月球车在月球上工作时的情景。由于月球上昼夜温差极大,为保护仪器,月夜时月球车的左右两个面积均为S的太阳能电池板收起后覆盖在车上(这时电池板在下表面),两电池板可绕轴AB和CD以等大的角速度转动,等月昼来临再自动唤醒后打开,如图乙、丙所示。设月球车质量为m,运动时月面对其阻力为车重的K倍,月球表面重力加速度为g,电池板打开后会始终保持与太阳光垂直,且使月球车电动机具有最 大输出功率P,求:
(1)假设唤醒时阳光从月球车右上方并与月面成300角射来,两块太阳能电池板匀速打开与阳光垂直,求左右两电池板打开的时间之比。
(2)若月球车从静止开始以最大功率P在水平月面上做直线运动,通过距离L时达到最大速度,求这个过程经历的时间。
(3)太阳到月球的平均距离为R,太阳光在空间传播过程能量损失不计,太阳光垂直于电池板,太阳能转化成月球车机械能的总效率为
,已知半径为r的球其表面积为
,求太阳发光功率P0