(本小题满分14分)已知 c>0, 设命题p:指数函数在实数集R上为增函数,命题q:不等式
在R上恒成立.若命题p或q是真命题, p且q是假命题,求c的取值范围.
如图,已知椭圆,点B是其下顶点,过点B的直线交椭圆C于另一点A(A点在
轴下方),且线段AB的中点E在直线
上.
(1)求直线AB的方程;
(2)若点P为椭圆C上异于A、B的动点,且直线AP,BP分别交直线于点M、N,证明:OM·ON为定值.
如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?
如图,在正方体中,
分别是
中点.
求证:(1)∥平面
;
(2)平面
.
已知向量,且
共线,其中
.
(1)求的值;
(2)若,求
的值.
(本小题满分16分)已知为实数,函数
,函数
.
(1)当时,令
,求函数
的极值;
(2)当时,令
,是否存在实数
,使得对于函数
定义域中的任意实数
,均存在实数
,有
成立,若存在,求出实数
的取值集合;若不存在,请说明理由.