(本小题满分15分)
如图,已知椭圆=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及
直线
的交点从左到右的顺序为A、B、C、D,设
.
(Ⅰ)求的解析式;
(Ⅱ)求的最值.
为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下:
规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。
(Ⅰ)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;
(Ⅱ)现从乙厂抽出的非优等品中随机抽取两件,求至少抽到一件该元素含量为10毫克或13毫克的产品的概率。
【改编】(本小题满分12分)如图,设四棱锥的底面为菱形,且
,
,
.
(Ⅰ)证明:平面平面
;
(Ⅱ)设M、N分别为EC、ED的中点,求四棱锥的体积.
(本小题满分12分)设的内角
,
,
所对的边长分别为
,
,
且
,
.
(Ⅰ)若,求
的值;
(Ⅱ)若的面积为3,求
的值
(本小题满分10分)选修4—5:不等式选讲
已知函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若关于的不等式
恒成立,求实数
的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,半圆C的参数方程为
(
为参数,
),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求C的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线OM:
与半圆C的交点为O、P,与直线
的交点为Q,求线段PQ的长.