(本题12分)已知函数.
(1)当时,求函数
的单调递减区间;
(2)当时,
在
上恒大于0,求实数
的取值范围.
如图,四棱柱中,
是
上的点且
为
中
边上的高.
(Ⅰ)求证:平面
;
(Ⅱ)求证:;
(Ⅲ)线段上是否存在点
,使
平面
?说明理由.
已知为等差数列
的前
项和,且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前
项和公式.
已知函数.
(Ⅰ)求的值;
(Ⅱ)求函数的最小正周期及单调递减区间.
已知函数,其中
为大于零的常数,
,函数
的图像与坐标轴交点处的切线为
,函数
的图像与直线
交点处的切线为
,且
.
(I)若在闭区间上存在
使不等式
成立,求实数
的取值范围;
(II)对于函数和
公共定义域内的任意实数
,我们把
的值称为两函数在
处的偏差.求证:函数
和
在其公共定义域内的所有偏差都大于2.
已知椭圆的两个焦点分别为
,且
,点
在椭圆上,且
的周长为6.
(I)求椭圆的方程;
(II)若点的坐标为
,不过原点
的直线与椭圆
相交于
两点,设线段
的中点为
,点
到直线的距离为
,且
三点共线.求
的最大值.