已知椭圆C:,两个焦点分别为
、
,斜率为k的直线
过右焦点
且与椭圆交于A、B两点,设
与y轴交点为P,线段
的中点恰为B。
(1)若,求椭圆C的离心率的取值范围。
(2)若,A、B到右准线距离之和为
,求椭圆C的方程。
(本小题满分10分)选修4-5:不等式选讲
设函数f(x)=|x-1|+|x-2|.
(Ⅰ)画出函数y=f(x)的图象;
(Ⅱ)若不等式|a+b|-|a-b|≤|a|·f(x)对任意a,b∈R且a≠0恒成立,求实数x的范围
(本小题满分10分)选修4-l:几何证明选讲
如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.
(Ⅰ)求证:△DFE∽△EFA;
(Ⅱ)如果FG=1,求EF的长.
(本小题满分12分)
已知函数f1(x)=,f2(x)=
(其中m ∈R且m≠0).
(Ⅰ)讨论函数f1(x)的单调性;
(Ⅱ)若m<-2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(Ⅲ)设函数g(x)=当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.
(本小题满分12分)
已知椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从它们每条曲线上至少取两个点,将其坐标记录于下表中:
x |
5 |
-![]() |
4 |
![]() |
![]() |
y |
2![]() |
0 |
-4 |
![]() |
-![]() |
(Ⅰ)求C1和C2的方程;
(Ⅱ)过点S(0,-)且斜率为k的动直线l交椭圆C1于A、B两点,在y轴上是否存在定点D,使以线段AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.
(本小题满分12分)
如图,三棱柱ABC-A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)求直线AB1与平面A1BD所成的角的正弦值.