游客
题文

(本题10分)
已知等差数列满足的前项和.
(1)求通项及当为何值时,有最大值,并求其最大值。
(2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.

科目 数学   题型 解答题   难度 较易
知识点: 数列综合
登录免费查看答案和解析
相关试题

已知:在中, 分别为角所对的边,且角为锐角,

(Ⅰ)求的值;
(Ⅱ)当时,求的长.

设函数,曲线过点,且在点处的切线斜率为2.
(Ⅰ)求的值;
(Ⅱ)求的极值点;
(Ⅲ)对定义域内任意一个,不等式是否恒成立,若成立,请证明;若不成立,请说明理由。

已知椭圆)的离心率,直线与椭圆交于不同的两点,以线段为直径作圆,圆心为
(Ⅰ)求椭圆的方程;
(Ⅱ)当圆轴相切的时候,求的值;
(Ⅲ)若为坐标原点,求面积的最大值。

已知,命题:对任意,不等式恒成立;命题:存在,使得成立
(Ⅰ)若为真命题,求的取值范围;
(Ⅱ)当,若为假,为真,求的取值范围。
(Ⅲ)若的充分不必要条件,求的取值范围。

从一副扑克牌的红桃花色中取5张牌,点数分别为1、2、3、4、5,甲、乙两人玩一种游戏:
甲先取一张牌,记下点数,放回后乙再取一张牌,记下点数.如果两个点数的和为偶数就算甲胜,否则算乙胜.
(Ⅰ)求甲胜且点数的和为6的事件发生的概率;
(Ⅱ)分别求出甲胜与乙胜的概率,判断这种游戏规则公平吗?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号