a11,a12,……a18
a21,a22,……a28
…………………
a81,a82,……a88
64个正数排成8行8列, 如上所示:在符合中,i表示该数所在的行数,j表示该数所在的列数。已知每一行中的数依次都成等差数列,而每一列中的数依次都成等比数列(每列公比q都相等)且
,
,
。
⑴若,求
和
的值。
⑵记第n行各项之和为An(1≤n≤8),数列{an}、{bn}、{cn}满足,联
(m为非零常数),
,且
,求
的取值范围。
⑶对⑵中的,记
,设
,求数列
中最大项的项数。
如图,抛物线与
轴交于两点
,点
在抛物线上(点
在第一象限),
∥
.记
,梯形
面积为
.
(Ⅰ)求面积以
为自变量的函数式;
(Ⅱ)若,其中
为常数,且
,求
的最大值.
已知椭圆的离心率为
,一个焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线交椭圆
于
,
两点,若点
,
都在以点
为圆心的圆上,求
的值.
如图,矩形中,
,
.
,
分别在线段
和
上,
∥
,将矩形
沿
折起.记折起后的矩形为
,且平面
平面
.
(Ⅰ)求证:∥平面
;
(Ⅱ)若,求证:
;
(Ⅲ)求四面体体积的最大值.
某校高一年级开设研究性学习课程,()班和(
)班报名参加的人数分别是
和
.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(
)班抽取了
名同学.
(Ⅰ)求研究性学习小组的人数;
(Ⅱ)规划在研究性学习的中、后期各安排次交流活动,每次随机抽取小组中
名同学发言.求
次发言的学生恰好来自不同班级的概率.
在△中,已知
.
(Ⅰ)求角;
(Ⅱ)若,△
的面积是
,求
.