如图所示,虚线上方有场强为E的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab是一根长为L的绝缘细杆,沿电场线放置在虚线上方的场中,b端在虚线上.将一套在杆上的带正电的小球从a端由静止释放后,小球先做加速运动,后做匀速运动到达b端。已知小球与绝缘杆间的动摩擦因数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是L/3,求带电小球从a到b运动过程中克服摩擦力所做的功与电场力所做功的比值。
(16分)如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
⑴求初始时刻通过电阻R的电流I的大小和方向;
⑵当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
⑶导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。
如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直。 已知线圈的匝数N=100,边长ab ="1." 0m、bc=0.5m,电阻r=2。 磁感应强度B在0~1s内从零均匀变化到0.2T。 在1~5s内从0.2T均匀变化到-0.2T,取垂直纸面向里为磁场的正方向。求:
(1)0.5s时线圈内感应电动势的大小E和感应电流的方向;
(2)在1~5s内通过线圈的电荷量q;
(3)在0~5s内线圈产生的焦耳热Q。
(15分)如图甲所示,在水平地面上固定一对与水平面倾角为α的光滑平行导电轨道,轨道间的距离为l,两轨道底端的连线与轨道垂直,顶端接有电源.将一根质量为m的直导体棒ab放在两轨道上,且与两轨道垂直.已知轨道和导体棒的电阻及电源的内电阻均不能忽略,通过导体棒的恒定电流大小为I,方向由a到b,图乙为图甲沿a → b方向观察的平面图.若重力加速度为g,在轨道所在空间加一竖直向上的匀强磁场,使导体棒在轨道上保持静止.
⑴ 请在图乙所示的平面图中画出导体棒受力的示意图;
⑵ 求出磁场对导体棒的安培力的大小;
⑶ 如果改变导轨所在空间的磁场方向,试确定使导体棒在轨道上保持静止的匀强磁场磁感应强度B的最小值的大小和方向.
分如图,在xoy平面内第二象限区域内有垂直纸面向内的匀强磁场B,其大小为0.2T,在A(-6cm,0)点有一粒子发射源,向x轴上方180°范围内发射
的负粒子,粒子的比荷为
,不计粒子重力,求:
(1) 粒子在磁场中做圆周运动的半径.
(2) 粒子在磁场中运动的最长时间是多少(结果用反三角函数表示)?
(3) 若在范围内加一沿y轴负方向的匀强电场,从y轴上离O点最远处飞出的粒子经过电场后恰好沿x轴正向从右边界某点飞出,求出该点坐标(以厘米为单位).
如图所示,两根固定在水平面上的光滑平行金属导轨MN和PQ,一端接有阻值为R的电阻,处于方向竖直向下的匀强磁场中.在导轨上垂直导轨跨放质量为m的金属直杆,金属杆的电阻为r,金属杆与导轨接触良好,导轨足够长且电阻不计.金属杆在垂直于杆的水平恒力F作用下向右匀速运动时,电阻R上的消耗的电功率为P,从某一时刻开始撤去水平恒力F.求撤去水平力后:
⑴ 当电阻R上消耗的功率为时,金属杆的加速度大小和方向.
⑵ 求撤去F后直至金属杆静止的整个过程中电阻R上产生的焦耳热.