(本题满分12分)已知函数f(x)=(
).
(1)求函数f(x)的周期和递增区间;
(2)若函数在[0,
]上有两个不同的零点x1、x2,求tan(x1+x2)的值.
(本题满分12分)如图所示,在正方体ABCD—A1B1C1D1中,E是棱DD1的中点.
(1)求直线BE和平面ABB1A1所成角的正弦值;
(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.
(本题满分12分)某种有奖销售的小食品,袋内印有“免费赠送一袋”或“谢谢品尝”字样,购买一袋若其袋内印有“免费赠送一袋”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一袋该食品。
(1)求甲中奖且乙、丙都没有中奖的概率;
(2)求中奖人数的分布列及数学期望
.
(本题满分12分)在数列{an}中,已知a=-20,a
=a
+4(n∈
).
(1)求数列{an}的通项公式和前n项和An;
(2)若(n∈
),求数列{bn}的前n项Sn.
(本题14分)已知抛物线的顶点为坐标原点
,焦点
,(1)求抛物线
的方程;
(2) 过点作直线交抛物线
于
、
两点,若直线
与
分别交直线
于
、
两点,当
时,求直线
的方程。