如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,
△EFK的面积最大?并求出最大面积.
如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上, .
(1)求证:四边形EBFD是平行四边形;
(2)若 ,求证:四边形EBFD是菱形.
下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.
三角形内角和定理:三角形三个内角的和等于 . 已知:如图,△ABC,求证: . |
|
方法一 证明:如图,过点A作 . |
方法二 证明:如图,过点C作 . |
已知 ,求代数式 的值.
如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系 ,规定一个单位长度代表1米.E 是抛物线的顶点.
(1)求此抛物线对应的函数表达式;
(2)在隧道截面内(含边界)修建“”型或“
”型栅栏,如图2、图3中粗线段所示,点
在x轴上,MN与矩形
的一边平行且相等.栅栏总长l为图中粗线段
MN长度之和,请解决以下问题:
(ⅰ)修建一个“”型栅栏,如图2,点
在抛物线AED上.设点P1的横坐标为
,求栅栏总长l与m之间的函数表达式和l的最大值;
(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“
”型两种设计方案,请你从中选择一种,求出该方案下矩形
面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).
已知四边形ABCD中, ,连接BD,过点C作BD的垂线交AB于点E,连接DE.
(1)如图1,若 ,求证:四边形BCDE是菱形;
(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
(ⅰ)求∠CED的大小;
(ⅱ)若 ,求证: .