(本小题满分12分)正在执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.如图所示,到达相关海域处后发现,在南偏西
、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东
的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东
的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出
的值;如果未能追上,请说明理由.
已知函数的图象在点
处的切线的斜率为2.
(Ⅰ)求实数的值;
(Ⅱ)设,讨论
的单调性;
(Ⅲ)已知且
,证明:
已知椭圆的焦距为
,且过点
.
(1)求椭圆的方程;
(2)已知,是否存在
使得点
关于
的对称点
(不同于点
)在椭圆
上?若存在求出此时直线
的方程,若不存在说明理由.
如图,三角形和梯形
所在的平面互相垂直,
,
,
是线段
上一点,
.
(Ⅰ)当时,求证:
平面
;
(Ⅱ)求二面角的正弦值;
(Ⅲ)是否存在点满足
平面
?并说明理由.
在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为、
,设
为坐标原点,点
的坐标为
,记
.
(Ⅰ)求随机变量的最大值,并求事件“
取得最大值”的概率;
(Ⅱ)求随机变量的分布列和数学期望.
在△ABC中,已知A=,
.
(Ⅰ)求cosC的值;
(Ⅱ)若BC=2,D为AB的中点,求CD的长.