为了迎接2010年在广州举办的亚运会,我市某体校计划举办一次宣传活动,届时将在运动场的一块空地ABCD(如图)上摆放花坛,已知运动场的园林处(P点)有一批鲜花,今要把这批鲜花沿道路PA或PB送到空地ABCD中去,且PA="200" m,PB="300" m,∠APB=60°. (1)试求A、B两点间的距离;(2)能否在空地ABCD中确定一条界线,使位于界线一侧的点,沿道路PA送花较近;而另一侧的点,沿道路PB送花较近?如果能,请说出这条界线是一条什么曲线,并求出其方程.
如图,四棱锥P—ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上。 (1)求证:平面AEC⊥PDB; (2)当PD=AB且E为PB的中点时,求AE与平面PDB所成角的大小。
已知△ABC中,A(1,1),B(m,),C(4,2),1<m<4。 求m为何值时,△ABC的面积S最大。
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=,b=4,且BC边上的高h=。 (1)求角C; (2)求边a。
选修4—5:不等式选讲 已知,若不等式恒成立,求实数的取值范围.
选修4—4:坐标系与参数方程 求直线(为参数)被曲线所截的弦长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号