(本小题满分12分)
从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率
.
(1)求从该批产品中任取1件是二等品的概率;
(2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求
的分布列.
如图,要测量河对岸两点间的距离,今沿河
岸选取相距40米的
两点,测得
60°,
=45°,
60° ,
30°,求
两点间的距离.
已知数列的前
项和为
,且
是
与2的等差中项,数列
满足
,点
在直线
上,
(1)求数列,
的通项公式;
(2)设,求数列
的前
项和
.
已知等差数列成等比数列,
求数列的公差
.
(本不题满分14分)
已知在平面直角坐标系中,向量
,△OFP的面积为
,且
。
(1)设,求向量
的夹角
的取值范围;
(2)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程。
.
如图1,平面四边形ABCD关于直线AC对称,
,把△ABD沿BD折起(如图2),
使二面角A―BD―C的余弦值等于
。对于图2,完成以下各小题:
(1)求A,C两点间的距离;
(2)证明:AC平面BCD;
(3)求直线AC与平面ABD所成角的正弦值。