(本小题12分)
如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、BC的中点.
(Ⅰ)求证:平面B1MN⊥平面BB1D1D;
(II)当点P为棱DD1中点时,求直线MB1与平面A1C1P所成角的正弦值;
数列{an}中,a1 = 1,当时,其前n项和满足
(1)求Sn的表达式;
(2)设,数列{bn}的前n项和为Tn,求Tn.
已知函数为常数).
(1)求函数的最小正周期;
(2)求函数的单调递增区间;
(3)若时,
的最小值为– 2 ,求a的值.
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
设函数,
,函数
的图象与
轴的交点也在函数
的图象上,且在此点有公共切线.
(Ⅰ)求、
的值;
(Ⅱ)对任意的大小.
设等差数列{an}的前n项和为Sn,且Sn=nan+an—c(c是常数,n∈N*),a2=6.
(Ⅰ)求c的值及{an}的通项公式;
(Ⅱ)证明: