(本小题12分)
如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、BC的中点.
(Ⅰ)求证:平面B1MN⊥平面BB1D1D;
(II)当点P为棱DD1中点时,求直线MB1与平面A1C1P所成角的正弦值;
某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为
,山区边界曲线为
,计划修建的公路为l,如图所示,
,
为
的两个端点,测得点
到
的距离分别为5千米和40千米,点
到
的距离分别为20千米和2.5千米,以
所在的直线分别为
,
轴,建立平面直角坐标系
,假设曲线
符合函数
(其中
,
为常数)模型.
(1)求
,
的值;
(2)设公路l与曲线
相切于
点,
的横坐标为
.
①请写出公路l长度的函数解析式
,并写出其定义域;
②当
为何值时,公路l的长度最短?求出最短长度.
如图,在直三棱柱
中,已知
,设
的中点为
,
.
求证:
(1) 平面
(2) .
在
中,已知
.
(1)求
的长;
(2)求
的值.
如图,椭圆
(
)的左右焦点分别为
,
,且过
的直线交椭圆于
两点,且
.
(Ⅰ)若
,
|,求椭圆的标准方程.
(Ⅱ)若
,且
,试确定椭圆离心率的取值范围.
如图,三棱锥
中,平面
平面
,
,点
在线段
上,且
,点
在线段
上,且
.
(Ⅰ)证明:
平面
.
(Ⅱ)若四棱锥
的体积为7,求线段
的长.