已知抛物线
上有不同的两点E
和F
.
(1)求抛物线的解析式.
(2)如图,抛物线
与
轴和
轴的正半轴分别交于点
和
,
为
的中点,
在
的同侧以
为中心旋转,且
,
交
轴于点
,
交
轴于点
.设
的长为
,BC的长为
,求
和
之间的函数关系式
(3)当m,n为何值时,∠PMQ的边过点F.
已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△AˊBD.
(1)利用尺规作出△AˊBD.(要求保留作图痕迹,不写作法);
(2)设D Aˊ与BC交于点E,求证:△BAˊE≌△DCE.
先化简,再求值:,其中
如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.
解方程:.
我们知道,经过原点的抛物线解析式可以是。
(1)对于这样的抛物线:
当顶点坐标为(1,1)时,a=;
当顶点坐标为(m,m),m≠0时,a 与m之间的关系式是;
(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b;
(3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,B3,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长。