B. 选修4-2:矩阵与变换
已知, 求矩阵B.
(本小题满分7分)《选修4-4:坐标系与参数方程》
已知曲线的参数方程:
(
为参数), 曲线
上的点
对应的参数
,以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)已知直线过点
,且与曲线
于
两点,求
的范围.
(本小题满分7分)选修4—2:矩阵与变换
已知2×2矩阵M=有特征值λ=-1及对应的一个特征向量e1=
.
(Ⅰ)求矩阵M.
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(本小题满分13分,(1)小问3分,(2)小问4分,(3)小问6分)
对于函数,若存在实数对(
),使得等式
对定义域中的每一个
都成立,则称函数
是“(
)型函数”.
(1)判断函数是否为 “(
)型函数”,并说明理由;
(2)若函数是“(
)型函数”,求出满足条件的一组实数对
;
(3)已知函数是“(
)型函数”,对应的实数对
为(1,4).当
时,
,若当
时,都有
,试求
的取值范围.
(本大题13分)如图,椭圆的左焦点为
,过点
的直线交椭圆于
两点.
的最大值是
,
的最小值是
,满足
.
(1)求该椭圆的离心率;
(2)设线段的中点为
,
的垂直平分线与
轴和
轴分别交于
两点,
是坐标原点.记
的面积为
,
的面积为
,求
的取值范围.
(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
态度 调查人群 |
应该取消 |
应该保留 |
无所谓 |
在校学生 |
2100人 |
120人 |
![]() |
社会人士 |
600人 |
![]() |
![]() |
(1)已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为
,现用分层抽样的方法在所有参与调查的人中抽取
人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数
的分布列和数学期望.