游客
题文

如图,小明家所住楼房的高度米,到对面较高楼房的距离米,当阳光刚好从两楼房的顶部射入时,测得光线与水平线的夹角为.据此,小明便知楼房的高度.请你写出计算过程

(结果精确到米.参考数据:).

科目 数学   题型 解答题   难度 中等
知识点: 应用类问题
登录免费查看答案和解析
相关试题

已知二次函数图象顶点为C(1,0),直线与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上.

(1)求此二次函数的解析式;
(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式;
(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.

下面给出的正多边形的边长都是20cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,剪拼线段用粗黑实线表示,在图中标注出必要的符号和数据,并作简要说明.)
(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;

(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等.

某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10个.
(1)设每个定价增加元,此时的销售量是多少?(用含的代数式表示)
(2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?
(3)超市若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

如图,.是反比例函数(k>0)在第一象限图象上的两点,点的坐标为(2,0),若△与△均为等边三角形.

(1)求此反比例函数的解析式;
(2)求点的坐标.

用一张长12cm宽5cm的矩形纸片折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(方案一),小丰同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(方案二).谁折出的菱形面积更大?请你通过计算说明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号