(本小题满分10分)
某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如下表:
时间(将第x天记为x) x |
1 |
10 |
11 |
18 |
单价(元/件)P |
9 |
0 |
1 |
8 |
而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.
(1)写出每天销售y(元)与时间x(天)的函数关系式y=f(x);
(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此测试结果应将单价P设定为多少元为好?(结果精确到1元)
已知函数,
(l)求函数的最小正周期;
(2)当时,求函数f(x)的单调区间。
已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求
的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证
.
给定椭圆.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
已知函数, 数列
满足
.
(1)求数列的通项公式;
(2)令,若
对一切
成立,求最小正整数m.
如图,已知正方体的棱长为2,E、F分别是
、
的中点,过
、E、F作平面
交
于G.
(l)求证:EG∥;
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体
的体积.