设斜率为的直线
交椭圆
:
于
两点,点
为弦
的中点,直线
的斜率为
(其中
为坐标原点,假设
、
都存在).
(1)求×
的值.
(2)把上述椭圆一般化为
(
>
>0),其它条件不变,试猜想
与
关系(不需要证明).请你给出在双曲线
(
>0,
>0)中相类似的结论,并证明你的结论.
已知以点为圆心的圆经过点
和
,线段
的垂直平分线交圆于点
和
,且
.
(1)求直线的方程;
(2)求圆的方程.
如图,在四棱锥中,底面为直角梯形,
,
,
底面
,且
,
、
分别为
、
的中点.
(1)求证:平面
;
(2)求证:.
已知条件,条件
,若
是
的充分条件,求实数
的取值范围.
己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线
与椭圆C交于不同两点
.
(1)求椭圆C的方程;
(2)设直线斜率为1,求线段
的长;
(3)设线段的垂直平分线交
轴于点P(0,y0),求
的取值范围.
如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.
(1)求证:AC1∥平面CDB1;
(2)求四面体B1C1CD的体积.