设斜率为的直线交椭圆:于两点,点为弦的中点,直线的斜率为(其中为坐标原点,假设、都存在).(1)求×的值. (2)把上述椭圆一般化为(>>0),其它条件不变,试猜想与关系(不需要证明).请你给出在双曲线(>0,>0)中相类似的结论,并证明你的结论.
为2∶1,将逆时针方向转90°到QH, (1)求R点轨迹方程 (2)求|RH|的最大值
A,B恒有 (1)求弦AB中点M的轨迹方程 (2)以AP和PB为邻边作矩形AQBP,求点Q轨迹方程 (3)若x,y满足Q点轨迹方程,求的最值
,定点F(10,4),对于x轴上移动的点P(t,0)作一折线FPQ,使,若折线FPQ的PQ部分与正方形ABCD的边界有公共点, (1)求:B、D坐标;(2)求t的取值范围.
两点(1)求△AOB面积的最小值及此时直线方程(O为原点) (2)求直线在两坐标轴上截距之和的最小值
的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号