(本小题满分14分)
某商场“十.一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号。顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会。
(1)求该顾客摸三次球被停止的概率;
(2)设(元)为该顾客摸球停止时所得的奖金数,求
的分布列及数学期望
.
为贯彻“激情工作,快乐生物”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选—题答—题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为.
(1)求选手甲答题次数不超过4次可进入决赛的概率;
(2)设选手甲在初赛中答题的个数,试写出
的分布列,并求
的数学期望。
已知函数,
.
(1)求的值;
(2)设、
,
,
,求
的值.
已知函数.
(I)若,求函数
的单调区间;
(Ⅱ)求证:
(Ⅲ)若函数的图象在点
处的切线的倾斜角为
,对于任意的
,函数
是
的导函数)在区间
上总不是单调函数,求
的取值范围。
已知数列中,
且点
在直线
上。
(1)求数列的通项公式;
(2)若函数求函数
的最小值;
(3)设表示数列
的前项和.试问:是否存在关于
的整式
,使得
对于一切不小于2的自然数
恒成立?若存在,写出
的解析式,并加以证明;若不存在,试说明理由。
如图,海上有两个小岛相距10
,船O将保持观望A岛和B岛所成的视角为
,现从船O上派下一只小艇沿
方向驶至
处进行作业,且
.设
。
(1)用分别表示
和
,并求出
的取值范围;
(2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线
的距离为
,求BD的最大值.