如图,椭圆长轴端点为,
为椭圆中心,
为椭圆的右焦点,且
,
;
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线
交椭圆于
两点,问:是否存在直线
,使点
恰为
的垂心?若存在,求出直线
的方程;若不存在,请说明理由.
已知函数在区间
上有且只有一个零点,求实数
的取值范围。
已知为公差不为零的等差数列,首项
,
的部分项
、
、 、
恰为等比数列,且
,
,
.
(1)求数列的通项公式
;
(2)若数列的前
项和为
,求
.
如图,某单位准备修建一个面积为600平方米的矩形场地(图中)的围墙,且要求中间用围墙
隔开,使得
为矩形,
为正方形,设
米,已知围墙(包括
)的修建费用均为800元每米,设围墙(包括
)的修建总费用为
元。
(1)求出关于
的函数解析式;
(2)当为何值时,设围墙(包括
)的的修建总费用
最小?并求出
的最小值。
某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取名学生的数学成绩, 制成下表所示的频率分布表.
(1)求,
,
的值;
(2)若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2名与张老师面谈,求第三组中至少有名学生与张老师面谈的概率.
组号 |
分组 |
频数 |
频率 |
第一组 |
![]() |
![]() |
![]() |
第二组 |
![]() |
![]() |
![]() |
第三组 |
![]() |
![]() |
![]() |
第四组 |
![]() |
![]() |
![]() |
第五组 |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
在中,角
、
、
的对边分别为
、
、
,且
,
.(1) 求
的值;
(2) 设函数,求
的值.