下图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X轴上距坐标原点L=0.50m的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。
(1)求上述粒子的比荷;
(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;
(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。
(8分) 一质量为10kg的物体在长为5m的绳子牵引下,在竖直平面内作圆周运动,通过最低的速度为10m/s,求此时对绳子的拉力。(g=10m/s2)
如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,, OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反。带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直。已知M到原点O的距离OM = a,不计粒子的重力。求:
(1)匀强电场的电场强度E的大小;
(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;
(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内。由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度。
如图所示,固定斜面AB、CD与竖直光滑圆弧BC相切于B、C点,两斜面的倾角θ=37°,圆弧BC半径R=2m。一质量m=1kg的小滑块(视为质点)从斜面AB上的P点由静止沿斜面下滑,经圆弧BC冲上斜面CD。已知P点与斜面底端B间的距离L1=6m,滑块与两斜面间的动摩擦因数均为μ=0.25,g=10m/s2。求:
(1)小滑块第1次经过圆弧最低点E时对圆弧轨道的压力;
(2)小滑块第1次滑上斜面CD时能够到达的最远点Q(图中未标出)距C点的距离;
(3)小滑块从静止开始下滑到第次到达B点的过程中在斜面AB上运动通过的总路程。
如图所示,半径为r1的圆形区域内有匀强磁场,磁场的磁感应强度大小为B0、方向垂直纸面向里,半径为r2的金属圆环右侧开口处与右侧电路相连,已知圆环电阻为R,电阻R1= R2= R3=R,电容器的电容为C,圆环圆心O与磁场圆心重合。一金属棒MN与金属环接触良好,不计棒与导线的电阻,电键S1处于闭合状态、电键S2处于断开状态。
(1)若棒MN以速度v0沿环向右匀速滑动,求棒滑过圆环直径的瞬间产生的电动势和流过R1的电流。
(2)撤去棒MN后,闭合电键S2,调节磁场,使磁感应强度B的变化率,
为常数,求电路稳定时电阻R3在t0时间内产生的焦耳热;
(3)在(2)问情形下,求断开电键S1后流过电阻R2的电量。
从1907年起,美国物理学家密立根开始以精湛的技术测量光电效应中几个重要的物理量。他通过如图所示的实验装置测量某金属的遏止电压与入射光频率
,作出
---
的图象,由此算出普朗克常量h,并与普朗克根据黑体辐射测出的h相比较,以检验爱因斯坦方程的正确性。图中频率
、
、遏止电压
、
及电子的电荷量
均为已知,求:
①普朗克常量h;
②该金属的截止频率。