在平面直角坐标系 中,一次函数 的图象由函数 的图象平移得到,且经过点 .
(1)求这个一次函数的解析式;
(2)当 时,对于 的每一个值,函数 的值大于一次函数 的值,直接写出 的取值范围.
如图,菱形 的对角线 , 相交于点 , 是 的中点,点 , 在 上, , .
(1)求证:四边形 是矩形;
(2)若 , ,求 和 的长.
已知:如图, 为锐角三角形, , .
求作:线段 ,使得点 在直线 上,且 .
作法:①以点 为圆心, 长为半径画圆,交直线 于 , 两点;
②连接 .
线段 就是所求作的线段.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明: ,
.
,
点 在 上.
又 点 , 都在 上,
(填推理的依据).
.
如图,已知
与
互为余角,且
,
平分
,
平分
.
(1)求
的度数;
(2)如果已知中
,其他条件不变,求
的度数;
(3)如果已知中
,其他条件不变,求
的度数;
(4)从(1)、(2)、(3)中你能看出有什么规律.
某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.
(1)求两种货车各用多少辆;
(2)如果安排10辆货车前往A地,其中调往A地的大车有a辆,其余货车前往B地,若设总运费为W,求W与a的关系式(用含有a的代数式表示W).