游客
题文

对于给定首项 x 0 > a 3 ( a > 0 ) ,由递推公式 x n - 1 = 1 2 ( x n + a x n ) ( n N ) 得到数列 { x n } ,对于任意的 n N ,都有 x 8 > a 3 ,用数列 { x n } 可以计算 a 3 .

(1)取 x 0 = 5 , a = 100 ,计算 x 1 , x 2 , x 3 的值(精确到0.01);归纳出 x n , x n + 1 的大小关系;
(2)当 n 1 时,证明: x n - x n + 1 < 1 2 ( x n - 1 - x n ) .

(3)当 x 0 [ 5 , 10 ] 时,用数列 { x n } 计算 100 3 的近似值,要求 x n - x n + 1 < 10 - 4 ,请你估计 n ,并说明理由

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

已知定义域为的函数是奇函数.
(1)求的值
(2)判断函数的单调性
(3)若对任意的,不等式恒成立,求的取值范围

已知函数,其中,设
(1)判断的奇偶性,并说明理由
(2)若,求使成立的x的集合

求函数上的最小值

设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式;
(2)试写出一个区间,使得当时,且数列是递增数列,并说明理由;
(3)已知,是否存在非零整数,使得对任意,都有
恒成立,若存在,求之;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号