(本小题满分12分)在平面上给定非零向量满足
,
的夹角为600,
(1) 试计算和
的值;
(2) 若向量与向量
的夹角为钝角,求实数t的取值范围.
(本小题满分14分)
某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在内的频率,并补全这个频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数段为的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至多有
人在分数段
的概率.
(本小题满分14分)
已知命题:函数
是增函数;命题
:
.
(1)写出命题的否命题
;并求出实数
的取值范围,使得命题
为真命题;
(2)如果“” 为真命题,“
”为假命题,求实数
的取值范围.
(本小题满分12分)
已知四棱锥的三视图如下图所示,其中主视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.
是侧棱
上的动点.
(1)求证:
(2)若五点在同一球面上,求该球的体积.
![]() |
|||
![]() |
|||
(本小题满分12分)
已知函数的部分图象如图所示.
(1)求函数的解析式;
(2)令,判断函数
的奇偶性,并说明理由.
(本小题满分14分)已知数列的相邻两项
是关于
的方程
的两实根,且
(1)求证:数列是等比数列;
(2)设是数列
的前
项和,求
;
(3)问是否存在常数,使得
对
都成立,若存在,求出
的取值范围,若不存在,请说明理由。