(本小题满分12分)
已知点是椭圆
上任意一点
,直线
的方程为
(I)判断直线与椭圆E交点的个数;
(II)直线过P点与直线
垂直,点M(-1,0)关于直线
的对称点为N,直线PN恒
过一定点G,求点G的坐标。
某工厂在试验阶段大量生产一种零件.这种零件有A,B两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为5/12,至少一项技术指标达标的概率为11/12.按质量检验规定:两项技术指标都达标的零件为合格品.
(1)求一个零件经过检测为合格品的概率是多少?
(2)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?
(3)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
函数f(x)=(sinωx+cosωx)cosωx-0.5(ω>0)的最小正周期为4π,(1)求f(x)的单调递增区间;(2)在∆ABC中,角A,B,C的对边分别是a,b,c,满足(2a-c)cosB=bcosC,求角B的值,并求函数f(A)的取值范围
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分其中①6分、②2分。
设抛物线的焦点为
,过
且垂直于
轴的直线与抛物线交于
两点,已知
.
(1)求抛物线的方程;
(2)设,过点
作方向向量为
的直线与抛物线
相交于
两点,求使
为钝角时实数
的取值范围;
(3)①对给定的定点,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由。
②对,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?(只要求写出结论,不需用证明)
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
定义:对函数,对给定的正整数
,若在其定义域内存在实数
,使得
,则称函数
为“
性质函数”。
(1)判断函数是否为“
性质函数”?说明理由;
(2)若函数为“2性质函数”,求实数
的取值范围;
(3)已知函数与
的图像有公共点,求证:
为“1性质函数”。
本题共有2个小题,第1小题满分6分,第2小题满分8分。已知数列是各项均不为
的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前n项和.
(1)求、
和
;
(2)若对任意的,不等式
恒成立,求实数
的取值范围