为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已右在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(Ⅲ)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率。
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
P |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:其中
)
(本小题满分12分)
已知函数,在点
处的切线方程为
。
(1)求与
的值;
(2)求的单调区间。
(本小题满分12分)
设数列的前n项和为
,且
,数列
为等差数列,且
(1) 求数列,
的通项公式;
(2)若,求数列
的前n项和
。
(本小题满分12分)
在中,
,记
的夹角为
.
(Ⅰ)求的取值范围;
(Ⅱ)求函数的最大值和最小值.
(本小题满分12分)
已知是首项为19,公差为-2的等差数列,
为
的前
项和.
(1)当n为何值时最大(用两种方法);
(2)设是首项为1,公比为3的等比数列,求数列
的通项公式及其前
项和
。
(本小题满分10分)
已知向量 =(cos
,sin
),
=(cos
,sin
),|
|=
.
(Ⅰ)求cos(-
)的值;
(Ⅱ)若0<<
,-
<
<0,且sin
=-
,求sin
的值.