游客
题文

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50

   已右在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(Ⅲ)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率。
下面的临界值表供参考:


0.15
0.10
0.05
0.025
0.010
0.005
0.001
P
2.072
2.706
3.841
5.024
6.635
7.879
10.828

  (参考公式:其中

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:

降水量X




工期延误天数
0
2
6
10

历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:
(1)工期延误天数的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.

在△ABC中,已知,求角A、B、C的大小.

已知向量,设函数
(1)求f(x)的最小正周期;
(2)求f(x)在[0,]上的最大值和最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号