游客
题文

已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

如图所示,四棱锥 P - ABCD 的底面 ABCD 是边长为 1 的菱形, BCD = 60 , E CD 的中点, PA 底面 ABCD , PA = 2 .

(I) 证明: 平面 PBE 平面 PAB ;

(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.

甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是 1 2 , 且面试是否合格互不影响.

求: ( I ) 至少有 1 人面试合格的概率;

( II ) 签约人数 ξ 的分布列和数学期望.

(1) 求 7 C 6 3 - 4 C 7 4 的值;

(2) 设 m , n N * , n m , 求证:

( m + 1 ) C m m + ( m + 2 ) C m + 1 m + ( m + 3 ) C m + 2 m + + n C n - 1 m + ( n + 1 ) C n m = ( m + 1 ) C n + 2 m + 2

如图, 在平面直角坐标系 xOy 中, 已知直线 l : x - y - 2 = 0 , 抛物线 C : y 2 = 2 px ( p > 0 )

(1) 若直线 l 过抛物线 C 的焦点, 求抛物线 C 的方程;

(2) 已知抛物线 C 上存在关于直线 l 对称的相异两点 P Q .

①求证:线段 PQ 的中点坐标为 ( 2 - p , - p ) ;

②求 p 的取值范围.

image.png

D.(选做题选修 4 - 4

a > 0 , | x - 1 | < a 3 , | y - 2 | < a 3 ,求证: | 2 x + y - 4 | < a

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号