(本题8分)
学校“环保小组”的同学以60米/分的速度从学校出发,步行到距学校1000米的文化广场宣传环保知识. 5分钟后,小明以110米/分的速度从学校出发追赶“环保小组”,并且在途中追上了他们.求:
(1)小明用了多长时间追上“环保小组”?
(2)当小明追上“环保小组”时距离文化广场还有多远?
(本小题10分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:A→B(+l,+3);从C到D记为:C→D(+1,-2)。其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C( , ),C→ (-2, );
(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;
(3)假如这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,-1),(-1,+3),请在图中标出P的位置.
(本小题10分)(1)观察一列数a1=3,a2=32,a3=33,a4=34,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_______;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a6=_______,an=_______;(可用幂的形式表示)
(2)如果想要求l+2+22+23+...+210的值,可令S10=l+2+22+23+...+210,①将①式两边同乘以2,得_______②,由②减去①式,得S10=_______.
(3)若(1)中数列共有20项,设S20=3+32+33+34+…+a20,请利用上述规律和方法计算S20的值.
(本小题8分)某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)
第一次 |
第二次 |
第三次 |
第四次 |
第五次 |
第六次 |
第七次 |
-4 |
+7 |
-9 |
+8 |
+6 |
-5 |
-2 |
(1)求收工时距A地多远?
(2)在第 次纪录时距A地最远;
(3)若每km耗油0.3升,问共耗油多少升?
(本小题6分)对于有理数、
,定义运算:
.
(1)计算的值;
(2)填空:(填“>”或“=”或“<”),并请写出过程.
(本小题10分)
(1)在数轴上表示下列各数:0,–2.5,,–2,+5,
.
(2)将上列各数用“<”连接起来:___________ _____________________.