(本小题满分14分)
某商场以100元/件的价格购进一批衬衣,以高于进货价的价格出售,销售期有淡季与旺季之分,通过市场调查发现:
①销售量(件)与衬衣标价
(元/件)在销售旺季近似地符合函数关系:
,在销售淡季近似地符合函数关系:
,其中
为常数;
②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;
③若称①中时的标价
为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.
请根据上述信息,完成下面问题:
(Ⅰ)填出表格中空格的内容:
![]() 销售关系 |
标价(元/件) |
销售量![]() ![]() ![]() ![]() |
销售总利润![]() ![]() (元/件)的函数关系式 |
旺季 |
![]() |
![]() |
|
淡季 |
![]() |
|
|
(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元/件?
已知直线与椭圆
相交于A、B两点.。
(1)若椭圆的离心率为,焦距为2,求线段AB的长;
(2)若向量与向量
互相垂直(其中O为坐标原点),当椭圆的离心率e=2时,求椭圆的长轴的长.
.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)设SD = 2CD,求二面角A-EF-D的大小;
已知抛物线C:,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为
,求点M的坐标(x0,y0);
若直线l的方向向量是=(1,2,2),平面α的法向量是
=(-1,3,0),试求直线l与平面α所成角的余弦值。
已知函数若
,不等式
恒成立,求实数a的取值范围.