学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长提出由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.
如图,在平面直角坐标系中, 的顶点坐标分别为 , , (每个方格的边长均为1个单位长度).
(1)将 向右平移1个单位后得到△ ,请画出△ ;
(2)请以 为位似中心画出△ 的位似图形,使它与△ 的相似比为 ;
(3)点 为 内一点,请直接写出位似变换后的对应点 的坐标为 .
如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,点 坐标为 ,点 坐标为 ,点 是抛物线的顶点,过点 作 轴的垂线,垂足为 ,连接 .
(1)求抛物线的解析式及点 的坐标;
(2)点 是抛物线上的动点,当 时,求点 的坐标;
(3)若点 是抛物线上的动点,过点 作 轴与抛物线交于点 ,点 在 轴上,点 在坐标平面内,以线段 为对角线作正方形 ,请写出点 的坐标.
如图①,在 中, , ,点 在 上(且不与点 , 重合),在 的外部作 ,使 , ,连接 ,分别以 , 为邻边作平行四边形 ,连接 .
(1)请直接写出线段 , 的数量关系 ;
(2)将 绕点 逆时针旋转,当点 在线段 上时,如图②,连接 ,请判断线段 , 的数量关系,并证明你的结论;
(3)在图②的基础上,将 绕点 继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量 (本 与每本纪念册的售价 (元 之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出 与 的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
如图,在 中, ,以 为直径的 分别交线段 , 于点 , ,过点 作 ,垂足为 ,线段 , 的延长线相交于点 .
(1)求证: 是 的切线;
(2)若 , ,求图中阴影部分的面积.