如图所示,两块相同的金属板正对着水平放置,金属板长为L,两板间距离为d。上极板的电势比下极板高U。质量为m、带电量为q的正离子束,沿两板间中心轴线以初速度υ0进入两板间,最终都能从两板间射出。不计离子重力及离子间相互作用的影响。
(1)求离子在穿过两板的过程中沿垂直金属板方向上移动的距离y;
(2)若在两板间加垂直纸面的匀强磁场,发现离子束恰好沿直线穿过两板,求磁场磁感应强度B的大小和方向;
(3)若增大两板间匀强磁场的强度,发现离子束在穿过两板的过程中沿垂直金属板方向上移动的距离也为y,求离子穿出两板时速度的大小υ。
如图所示,固定在水平桌面上的有缺口的方形木块,abcd为半径为R(已知量)的四分之三圆周的光滑轨道,a为轨道的最高点,de面水平且有足够长度。今将质量为m的小球在d点的正上方某一高度为h(未知量)处由静止释放,让其自由下落到d处切入轨道内运动,小球恰能通过a点,(不计空气阻力,已知重力加速度为g)求:
(1)小球恰能通过a点时的速度及高度h. (用已知量R及g表示)
(2)小球通过a点后最终落在de面上的落点距d的水平距离
某一行星有一质量为m的卫星,该卫星做匀速圆周运动的周期为T,轨道半径为r,已知万有引力常量为G,求:
(1)行星的质量;
(2)卫星的加速度;
(3)若测得行星的半径恰好是卫星运行半径的,那么行星表面的重力加速度是多少?
图甲为游乐场的悬空旋转椅,我们把这种情况抽象为图乙的模型:一质量m = 40kg的球通过长L=12.5m的轻绳悬于竖直面内的直角杆上,水平杆长L′= 7.5m。整个装置绕竖直杆转动,绳子与竖直方向成角。当θ =37°时,(g = 9.8m/s2,sin37°= 0.6,cos37°= 0.8)求:
(1)绳子的拉力大小;
(2)该装置转动的角速度。
如图所示,长为l的轻细绳,上端固定在天花板上,下端系一质量为m的金属小球,将小球拉开到绳子绷直且呈水平的A点。将小球无初速度释放,求:
(1)小球落至最低点B时的速度多大?
(2)小球落至最低点时受到的拉力.
如图所示,水平传送带以4 m/s的速度匀速运动,传送带两端A、B间的距离为20 m。现将一质量为2 kg的木块无初速地放在A端,木块与传送带间的动摩擦因数为0.2,g取10 m/s2,求木块从A端运动到B端所用的时间。