如图,在矩形ABCD中,BC=24cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.
已知在相同时间内,若BQ="x" cm(),则AP="2x" cm,CM="3x" cm,DN="x2" cm.
(1)当x为何值时,以P、N两点重合?
(2)问Q、M两点能重合吗?若Q、M两点能重合,则求出相应的x的值;若Q、M两点不能重合,请说明理由。
(3)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形。
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,BC=2,求AD的长.
关于x的方程有两个不相等的实数根,
(1)求k的取值范围;
(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值,若不存在,说明理由.
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有 1 名、2 名、3 名、4 名、5 名、6名共六种情况,并制成了如下两幅不完整的统计图
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2)
(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1
(2)求出点A旋转到点A1所经过的路线长(结果保留π)
(1)计算:(3
(2)若()-6=0,求
的值.