如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△的顶点都在格点上,在方格纸中建立平面直角坐标系如图所示.
(1)画出△关于
轴的对称图形△
,并写出△
各顶点的坐标.
(2)把(1)中的△绕着点
顺时针旋转
得到△
,在图中画出△
,并回答△
与△
对应顶点的坐标有何关系
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.
(1)试问小球通过第二层位置的概率是多少?
(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层位置和第四层
位置处的概率各是多少?
已知与
是反比例函数
图象上的两个点.
(1)求的值;
(2)若点,则在反比例函数
图象上是否存在点
,使得以
四点为顶点的四边形为梯形?若存在,求出点
的坐标;若不存在,请说明理由.
已知,如图,正方形的边长为6,菱形
的三个顶点
分别在正方形
边
上,
,连接
.
(1)当时,求
的面积;
(2)设,用含
的代数式表示
的面积;
(3)判断的面积能否等于
,并说明理由.
学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
已知经过
,
,
,
四点,一次函数
的图象是直线
,直线
与
轴交于点
.
(1)在右边的平面直角坐标系中画出,直线
与
的交点坐标为;
(2)若上存在整点
(横坐标与纵坐标均为整数的点称为整点),使得
为等腰三角形,所有满足条件的点
坐标为;
(3)将沿
轴向右平移个单位时,
与
相切.