如图①,矩形纸片ABCD的边长分别为a、b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连结MN.
(1)如图②,分别沿ME、NF将MN两侧纸片折叠,使点A、C分别落在MN上的A’、C’处,直接写出ME与FN的位置关系;
(2)如图③,当MN⊥BC时,仍按(1)中的方式折叠,请求出四边形A’EBN与四边形C’FDM
的周长(用含a的代数式表示),并判断四边形A’EBN与四边形C’FDM周长之间的数量关系;
(3)如图④,若对角线BD与MN交于点O,分别沿BM、DN沿ME、NF将MN两侧纸片折叠,折叠后,点A、C恰好都落在点O处,并且得到的四边形BNDM是菱形,请你探索a、b之间的数量关系;
(4)在(3)情况下,当a=时,求菱形BNDM的面积.
(本题4分)如图,在方格纸中,△ABC的三个顶点和点M都在小方格的顶点上.按要求作图,使△ABC的顶点在方格的顶点上.
(1)过点M做直线AC的平行线;
(2)将△ABC平移,使点M落在平移后的三角形内部.
计算:
(1)x4÷x3·(-3x)2
(2)2x(2y-x) + (x+y)(x-y)
解下列二元一次方程组:
(1)
(2)
如图,长为50cm,宽为cm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为
cm.
(1)从图可知,每个小长方形较长一边长是cm(用含的代数式表示);
(2)求图中两块阴影A、B的周长和(可以用的代数式表示);
(3)分别用含,
的代数式表示阴影A、B的面积,并求
为何值时两块阴影部分的面积相等.
如图,已知四边形ABCD,AD∥BC.点P在直线CD上运动(点P和点C,D不重合,点P,A,B不在同一条直线上),若记∠DAP,∠APB,∠PBC分别为.
(1)当点P在线段CD上运动时,写出之间的关系并说出理由;
(2)如果点P在线段CD(或DC)的延长线上运动,探究之间的关系,并选择其中的一种情况说明理由.