设A、B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上。(I)求椭圆的方程;(II)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于A的点M,证明:为锐角三角形
设椭圆过点,离心率为. (1)求椭圆的方程; (2)求过点且斜率为的直线被椭圆所截得线段的中点坐标.
在中,角所对的边分别为,且,. (1)求的值; (2)若,,求三角形ABC的面积.
已知等差数列中满足,. (1)求和公差; (2)求数列的前10项的和.
已知抛物线的顶点在坐标原点,焦点在轴上,抛物线上的点到的距离为2,且的横坐标为1.直线与抛物线交于,两点. (1)求抛物线的方程; (2)当直线,的倾斜角之和为时,证明直线过定点.
设数列满足前项和. (1)求数列的通项公式; (2)求数列的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号