已知抛物线的顶点在坐标原点,焦点
在
轴上,抛物线上的点
到
的距离为2,且
的横坐标为1.直线
与抛物线交于
,
两点.
(1)求抛物线的方程;
(2)当直线,
的倾斜角之和为
时,证明直线
过定点.
已知函数是奇函数,
(1)求的值;
(2)若,求
的值.
全集
求集合.
已知函数,其中
,e=2.718 28 为自然对数的底数.
(1)设是函数
的导函数,求函数
在区间
上的最小值;
(2)若,函数
在区间
内有零点,证明:
.
设椭圆的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=
|F1F2|.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.
如图,在三棱柱中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(1)求证:平面ABE⊥平面B1BCC1;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E —ABC的体积.