(本小题满分13分)
一个袋中装有个形状大小完全相同的小球,球的编号分别为
.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
(Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有
次抽到
号球的概率;
(Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为
,求随机变量
的分布列.
已知函数,其中
.
(Ⅰ)若是函数
的极值点,求实数
的值;
(Ⅱ)若对任意的(
为自然对数的底数)都有
成立,求实数
的取值范围.
设是各项都为正数的等比数列,
是等差数列,且
,
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设数列的前
项和为
,求数列
的前
项和
.
四名教师被分到甲、乙、丙三所学校参加工作,每所学校至少一名教师.
(Ⅰ)求、
两名教师被同时分配到甲学校的概率;
(Ⅱ)求、
两名教师不在同一学校的概率;
(Ⅲ)设随机变量为这四名教师中分配到甲学校的人数,求
的分布列和数学期望.
已知函数(其中
>0),且函数
的最小正周期为
.
(Ⅰ)求的值;
(Ⅱ)求函数在区间
上的最大值和最小值.
在数列中,对于任意
,等式:
恒成立,其中常数
.
(1)求的值;
(2)求证:数列为等比数列;
(3)如果关于的不等式
的解集为
,试求实数
的取值范围.