椭圆的方程为
,斜率为1的直线
与椭圆
交于
两点.
(Ⅰ)若椭圆的离心率,直线
过点
,且
,求椭圆
的方程;
(Ⅱ)直线过椭圆的右焦点F,设向量
,若点
在椭圆
上,求
的取值范围.
(本小题满分10分,不等式选讲)
已知实数满足
,求
的最小值.
(本小题满分10分,坐标系与参数方程选讲)
在平面直角坐标系xOy中,已知直线的参数方程为:
(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.直线
与圆相交于A,B两点,求线段AB的长.
(本小题满分10分,矩阵与变换)
设矩阵,
,若
,求矩阵M的特征值.
(本小题满分10分,几何证明选讲)
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明:AD·DE=2PB2.
(本小题满分16分)已知函数,
.
(1)记,求
在
的最大值;
(2)记,令
,
,当
时,若函数
的3个极值点为
,
(ⅰ)求证:;
(ⅱ)讨论函数的单调区间(用
表示单调区间).