某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:
测试项目 |
测试成绩 |
||
甲 |
乙 |
丙 |
|
教学能力 |
85 |
73 |
73 |
科研能力 |
70 |
71 |
65 |
组织能力 |
64 |
72 |
84 |
(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;
(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由
分解因式:
解不等式组: ,并把解集在数轴上表示出来.
先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式.
解:∵,
∴.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)(2)
解不等式组(1),得,
解不等式组(2),得,
故的解集为
或
,
即一元二次不等式的解集为
或
.
问题:⑴ 求关于x的两个多项式的商组成不等式的解集;
⑵ 若a,b是⑴中解集x的整数解,以a,b,c为△ABC为边长,c是△ABC中的最长的边长.
①求c的取值范围.
②若c为整数,求这个等腰△ABC的周长.
如图,已知点D为等腰直角△ABC内一点,∠ACB=90°,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证: ME=BD.
已知:如图,△ABC中,请你按下列要求读句画图: (“作图”不要求写作法,但要保留作图痕迹并写出结论).
⑴用尺规作图作∠BAC的角平分线AD交边BC于D点;
⑵作线段AD的垂直平分线EF,交AD于E点,交BC的延长线于F点;
⑶ 根据 ⑴,⑵作图, 连结AF, 若∠B=40°,请求出∠CAF的度数.