(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在
轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(1)求椭圆的方程;
(2)设直线过
且与椭圆相交于A,B两点,当P是AB的中点时,求直线
的方程.
一条斜率为1的直线与离心率e=
的椭圆C:
交于P、Q两点,直线
与y轴交于点R,且
,求直线
和椭圆C的方程;
已知函数的导函数
,数列{
}的前n项和为
,点
(n,
)均在函数
的图象上.若
=
(
+3)
⑴当n≥2时,试比较与
的大小;
⑵记试证
如图,椭圆C:焦点在
轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C:分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线
上一点P.
⑴求椭圆C及抛物线C1、C2的方程;
⑵若动直线与直线OP垂直,且与椭圆C交于不同两点M、N,已知点Q(
,0),求
的最小值.
已知数列,
满足a1=2,2an=1+anan+1,bn=an-1, bn≠0
⑴求证数列是等差数列,并求数列
的通项公式;
⑵令Tn为数列
的前n项和,求证:Tn<2
已知向量,函数
,且函数
图象的相邻两条对称轴之间的距离为
⑴作出函数y=-1在
上的图象
⑵在中,
分别是角
的对边,
求
的值