游客
题文

我国是水资源较贫乏的国家之一,各地采用价格调控等手段来达到节约用水的目的,某市每户每月用水收费办法是:水费=基本费+超额费+定额损耗费.且有如下两条规定:
①若每月用水量不超过最低限量立方米,只付基本费10元加上定额损耗费2元;
②若用水量超过立方米时,除了付以上同样的基本费和定额损耗费外,超过部分每立方米加付元的超额费.
解答以下问题:(1)写出每月水费(元)与用水量(立方米)的函数关系式;
(2)若该市某家庭今年一季度每月的用水量和支付的费用如下表所示:

月份
用水量(立方米)
水费(元)

5
17

6
22


12

 
试判断该家庭今年一、二、三各月份的用水量是否超过最低限量,并求的值.

科目 数学   题型 解答题   难度 中等
知识点: 复合三角函数
登录免费查看答案和解析
相关试题

(本小题满分12分)如图,已知ΔABC中,,AD=2DC,求ΔABC的面积.

已知,函数
(1)求的极小值;
(2)若上为单调增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围.

设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且
(1)若过三点的圆恰好与直线相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

设数列的前项和为,且满足
(1)求数列的通项公式;
(2)在数列的每两项之间都按照如下规则插入一些数后,构成新数列,在两项之间插入个数,使这个数构成等差数列,求的值;
(3)对于(2)中的数列,若,并求(用表示).

如图,在边长为4的菱形中,.点分别在边上,点与点不重合,.沿翻折到的位置,使平面平面
(1)求证:平面
(2)设点满足,试探究:当取得最小值时,直线与平面所成角的大小是否一定大于?并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号